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Sample windows in Asynchronous 

Efficiency measurements 
Abstract 

A drive for the increased efficiency of electronic power conversion systems requires greater 
attention to the impact of sampling techniques that are instinctively utilised, yet commonly 
inappropriate for dynamic testing environments. 
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1 INTRODUCTION 

Analysis of modern power systems will often require an efficiency measurement between two 

asynchronous, periodic waveforms. A typical example would be a variable-frequency drive 

that will take a mains input and generate a secondary AC output with a selectable frequency, 

so that the speed of an AC motor can be controlled. 

In order to quickly and accurately establish system efficiency, the correct sampling window for 

both input and output measurements should be established by identifying the frequency of 

input and output waveforms. Despite this fact, the approach of synchronising to each 

waveform independently is not typical in many power analyzers or data acquisition systems.  

 

This document seeks to explain why independent synchronisation is not typical and to illustrate 

why all users whose objective is to minimise error in efficiency measurements, should seek 

independent frequency detection and associated windows when measuring asynchronous 

waveforms. 

1.1 DOCUMENT STRUCTURE  
Section 2 introduces the limitations in using a finite window to measure a Root Mean Square 

(RMS) value and the main strategies for minimising the error for a single waveform. 

Section 3 extends the concepts of windowing to an efficiency measurement in an 

asynchronous system.  

 

 

  



 N4L White Paper 
  

Ref: D000120/ Issue 1 / 2020-05-06 
© Newtons4th Ltd. 2020  Page 2 of 11 

2 SAMPLE WINDOW SIZE – MEASUREMENT ERROR 

Periodic waveforms are usually quantified in time-average measurement. The most commonly 

used unit of measurement for AC power electronics is RMS, the Root Mean Square value. 

2.1 RMS definition of a periodic function  
The RMS of a time dependant signal is defined as1: 

𝑉 =  √
1

𝑇
∫ 𝑣2(𝑡) 𝑑𝑡

𝑇0+𝑇

𝑇0

 

Where: 

𝑇 = 𝑊𝑖𝑛𝑑𝑜𝑤 𝑤𝑖𝑧𝑒 

𝑇0 = 𝑊𝑖𝑛𝑑𝑜𝑤 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 

For any periodic signal, the determination of true RMS requires a measurement window size 

equal to an integer number of periods.  

2.2 QUANTIFYING WINDOW ERROR 
A common approach in data acquisition systems or Digital Multi Meters (DMM) is to use a 

fixed sized sample window. 

Fixing the window makes development of the measurement device easier as there is a 

constrained buffer size requirement and known response time for a measurement to be 

returned. However, this approach introduces a windowing error. 

2.2.1 Window error 

Taking the simplest AC signal as an example, a single sine wave, we can estimate the error 

from an imperfect measurement window. 

Given a sine wave with a magnitude √2  (which means that the true RMS is 1): 

𝑣(𝑡) = √2sin(𝑡) 

The RMS is therefore defined as: 

𝑅𝑀𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 =  √
1

𝑇
∫ (√2 sin(𝑡))2  𝑑𝑡

𝑇0+𝑇

𝑇0

 

 

Note that  𝑇0 can be varied to simulate the window shifting from the zero-crossing point, since 

fixed time windows cannot be guaranteed to be synchronous with a specific point in a cycle.  

 
1 This is the continuous definition. Real measurements will involve discrete samples but for systems 
with high sample rates, the error introduced by discrete measurement will be relatively small and have 
been excluded from this analysis 
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Figure 1: Time limited integration function    

 

Integration over a defined time period yields the following equation:  

𝑅𝑀𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 =  √
1

𝑇
 (𝑇 −  

sin(2(𝑇0 + 𝑇))

2
+  

sin(2𝑇0)

2
) 

2.2.2 Visualising the error 

The following plot displays the change in measured RMS value resulting from a varying data 

window size and its phase alignment with the waveform. Along the y-axis, the window size 𝑇 

is varied and each line represents a different phase displacement from 0 to 180 degrees. 

 

Figure 2:RMS measurement vs window size and waveform phase offset 

This figure shows that for any given window size there is an upper and lower bound on the 

measurement error which is also influenced by window position relative to the cycle.  

2.2.3  Quantifying the error limits 

Absolute limits can be quantified for any window size by taking the partial derivate of the 

measurement error with respect to the phase offset 𝑇0  and then identifying the functions 

turning points. 

Which gives the solutions: 

𝑇 = 𝑛𝜋    𝑎𝑛𝑑      𝑛 ≠ 0 
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𝑇0  =
𝑚𝜋 − 𝑇

2
 

From this, we can derive the area of potential measurement error: 

    

Figure 3:Measured RMS error limits for a given window size 

 

The shape of this plot intuitively makes sense because: 

• When the window is a multiple of half cycles, the solution converges to the correct 

answer – this is a half cycle because the waveform is squared, which therefore results 

in a waveform of twice the frequency. 

• As the window size tends towards zero the error is bound by two scenarios: Effectively 

converging on either the peak or the zero crossing. Therefore, for this wave, the limits 

to the measurement are 0 ≤ 𝑅𝑀𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 ≤  √2 

 

 

Figure 4: Upper and lower error limits for under-sized window  
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• It is also clear that as the size of the window increases the measurement will tend 

towards the correct answer. This is because the integral will include an increasing 

number of full cycles, plus an error term which will represent a decreasing proportion 

of the measurement. 

2.3 MINIMISING WINDOW ERROR 
Figure 3 illustrates limits on the error given for a range of window sizes. 

Given an aim of measuring the correct RMS, there are two approaches to maximising the 

accuracy of a practical measurement: 

1. Increase the window size – therefore averaging out the error inherent in non-ideal 

measurement.  

2. Optimise the window so that it is synchronised with the periodic waveform being 

measured. 

2.3.1 Time averaging 

Increasing the windows, or averaging of multiple smaller windows, will reduce this error. This 

is the most common approach taken for example, by Digital Multi Meters (DMM).  

This method only works if two criteria are met: first, the signal must be stable, otherwise you 

are no longer measuring a true cycle but are averaging the response, and; second, given that 

a fixed window size is selected, there is the requirement to average over multiple cycles. This 

introduces a frequency floor below which the accuracy cannot be guaranteed. Typically, in 

DMMs this will be about 20Hz to cover common line power applications.  

This approach gives the benefit of measurements at fixed intervals but faces the inherent 

problem that it is dependant up time average and will therefore smooth out power events and 

needs a settling time. 

It follows that while this technique may be suitable for precision measurements in steady state 

systems, it will be unreliable in dynamic or low frequency scenarios. 

2.3.2 Window synchronisation 

Measurement errors can be minimised by ensuring that the window length is always an integer 

multiple of cycles.  

Given a correctly sized window the measured RMS can be used without additional time 

averaging. This has two key benefits: 

• Short events, occurring on a small number of cycles, can be observed and won’t be 

smoothed out to the same extent. 

• Given the ability to track a dynamic frequency, the windows size can be adjusted live 

to give the answer required. 

A secondary benefit to always obtaining the frequency is that additional functions can be 

performed, such as a Discrete Fourier Transform (DFT), which can be used to analyse the 

harmonics of the waveform. This is often useful for the analysis of power systems. 

 

The following diagram illustrates RMS measurements derived from a simple 50Hz sinewave 

signal; first with a correctly sized window of 20ms (50Hz) and second, with a non-

synchronous window of 18.18ms (55Hz). 
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Figure 5:An illustration of RMS error resulting from an incorrectly sized measurement window. 

Non-synchronous sample windows clearly introduce a modulation of measured values that 

will only become correct after a considerable period of time-averaging. 
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3 EFFICIENCY MEASUREMENTS 

Having considered measurement issues associated with any periodic waveform, we now look 

at the headline subject of this document; the efficiency measurement of a system involving 

two asynchronous periodic waveforms. 

Before more detailed analysis, let us first consider the definition of efficiency commonly 

assumed to be satisfactory for most systems: 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(%) =  
𝑃𝑜𝑤𝑒𝑟𝑂𝑢𝑡

𝑃𝑜𝑤𝑒𝑟𝐼𝑛
× 100 

The equation uses time-averaged power values and it is generally assumed to be either a DC 

signal or a periodic waveform with the same frequency, which makes averaging simpler.  

3.1 THE ISSUE WITH ‘INSTANTANEOUS’ POWER  
Occasionally, the equation given above is misunderstood and there is the assumption that 

taking the ratio of instantaneous power measurements at the input and output device can be 

used to quickly obtain a meaningful efficiency. However, this is not usually true. 

Consider the simple case of a synchronised power system with sinusoidal power waveforms 

at both input and output - the same frequency, but with a phase shift: 

  

𝑃𝑜𝑤𝑒𝑟𝐼𝑛(𝑡) = sin2 (ωt) 

𝑃𝑜𝑤𝑒𝑟𝑂𝑢𝑡(𝑡) = sin2(ωt + θ) 

 

Substituting these values into the efficiency equation would yield: 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(𝑡) =  
𝑃𝑜𝑤𝑒𝑟𝑂𝑢𝑡(𝑡)

𝑃𝑜𝑤𝑒𝑟𝐼𝑛(𝑡)
 =  

sin2(ωt +  θ)

sin2 (ωt)
 

It is clear from observation that there will be values of 𝑡 for which the equation will include a 

division of zero, which is undefined. 

The explanation for this is that there is a finite energy store within the system, which in the 

case of most electrical systems, is associated with capacitors and/or inductors, that act as a 

temporary storage medium. At any instant in time, the input maybe charging these energy 

stores or output power is sourced from them. It is for this reason that we must again utilise a 

time-average power measurement. 

 

3.2 EFFICIENCY OF PERIODIC WAVEFORMS 
The power of periodic systems is usually described using time-averaged power.  

The practical difficulty in measuring these averaged values is that again, a measurement 

window containing discrete samples will need to be used.  
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𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  

1
𝑇𝑏

∫ 𝑃𝑂𝑢𝑡(𝜔𝑏𝑡) 𝑑𝑡
𝑇0+𝑇𝑏

𝑇0

1
𝑇𝑎

∫ 𝑃𝐼𝑛(𝜔𝑎𝑡) 𝑑𝑡
𝑇0+𝑇𝑎

𝑇0

 

The same issues associated with windowing discussions in Section 2 exist, but with the 

additional complexity that in most cases, the input and output frequencies are asynchronous. 

That is 𝜔𝑎 ≠ 𝜔𝑏. 

This means that unless there is a highly unlikely situation where one frequency is a harmonic 

of the other, any attempt to use a common sample window locked to a single period of either 

the input or output waveform, will guarantee the introduction of potentially significant error. 

3.2.1 Beating power measurements 

As stated in section 3.2, one window will generally not match the other, however there will be 

a time period over which both signals could be accurately averaged. This is a time period that 

contains an integer multiple of half cycles of both waveforms. This is the beat frequency. 

Given a simple power waveform, derived from a sinusoidal input through a resistance of  1Ω : 

𝑃(𝑡) =  
𝑉2(𝑡)

𝑅
= sin2(ωt) =  

1

2
(1 − cos(2𝜔𝑡)) 

We can plot an example of a beating waveform with a 50Hz and 60Hz signal. 

 

 

Figure 6: Input and output power, with a summation of the two to aid visualisation of the beat frequency. 

The beat frequency2 is given by 𝑓𝑏𝑒𝑎𝑡 = |𝑓𝑎 −  𝑓𝑏| =  |100 − 120| = 20𝐻𝑧. 

3.2.2 Synchronising to the beat 

In theory, the sample window could be synchronised to the beat frequency of the two signals. 

Using this window would ensure that the two averaged powers and therefore the efficiency 

measurement is correct. However, there is a significant downside. 

The beat frequency is the difference of the two frequencies. Two signals with a similar 

frequency will result in a very low beat frequency and therefore a large time period for the 

window. This goes against the aim of quickly obtaining an accurate measurement of the 

system efficiency.  

Figure 7 illustrates how, even as a continuons function, the efficiency oscillates and the 

measurement only coincides with the true value when the time period is a multiple of the beat 

frequency. 

 

 
2 The frequencies are twice that of the voltage input due to the square term in the power equation.  
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Figure 7: Continuous efficiency calculation using integrated power (energy) 

3.3 INDIVIDUALLY SYNCHRONISED TIME WINDOWS 
Section 3.2 demonstrated many of the inherent difficulties of obtaining the efficiency in an 

asynchronous power system. 

One method for working with this type of application, which overcomes many of the 

established issues, is to individually size the measurement window to each power waveform.  

The following sub-section provides an example of a system to demonstrate and compare 

results of the fixed-time windowing to the individually synchronised windowing method. 

3.3.1 Frequency converter example 

For illustration, imagine a simple and idealised3 frequency converter with a 50Hz, 1-watt input 

and 55Hz 1-watt output; this system would have a theoretical efficiency of 100%.  

For simplicity, let us assume the equivalent resistance of the input and output are 1Ω. The 

voltage waveforms can therefore be defined as: 

𝑣𝐼𝑛 (𝑡) =  √2 sin(2π50 t) 

𝑣𝑂𝑢𝑡 (𝑡) =  √2 sin(2π55 t) 

And the power waveforms: 

𝑝𝐼𝑛 =  
𝑣𝐼𝑛

2(𝑡)

𝑅
=  2 sin2(2π50 t)  

 
3 Although not representative of real system, the round values and device with perfect efficiency have 
been chosen to clearly illustrate the theory. 



 N4L White Paper 
  

Ref: D000120/ Issue 1 / 2020-05-06 
© Newtons4th Ltd. 2020  Page 10 of 11 

𝑝𝑂𝑢𝑡 =  
𝑣𝑂𝑢𝑡

2(𝑡)

𝑅
=  2 sin2(2π55 t) 

For reference, these power waveforms are plotted in Figure 8 plot A. 

3.3.2 Fixed-time windowing 

Fixed-time windowing uses a common window interval for both the input and output waveform. 

While the fixed window period may typically be selected for the approximate operating 

frequency range, in general the period is not directly related to any of the test waveforms. 

However, for this example the window size has been fixed to the 50Hz signal and therefore 

only the 55Hz will have the incorrect working size. 

Locking to the 50Hz signal gives a 20ms window. Figure 8 plot B captures the measured 

average powers for both waveforms. It is clear to see that the incorrectly size windows for the 

55Hz output causes the averaged power to oscillate between successive windows. 

Figure 8 plot D illustrates how unstable fixed time measurements propagate to an unstable 

system efficiency computation. 

Of course, as discussed in Section 2, given that the power measurements become correct 

over a longer window size, these measurements can be averaged over multiple windows and 

will result in a more accurate measurement.  

3.3.3 Individually synchronised windows 

Using this method, the sample window is sized according to the frequency of each waveform 

independently. In this example the 50Hz waveform again is sampled using a 20ms window 

but the 55Hz signal is now sampled using a window of ~18.18ms. 

The update rate of the measurement is set by the sample window; as a consequence of 

choosing different sample windows the power measurements are asynchronous, as can be 

seen in Figure 8 plot C. 

Receiving results at different times is not intuitive but reflects the underlying behaviour of the 

system being measured. This technique has the additional benefit that the measurements are 

delivered quickly for both waveforms and provide a more stable measurement.  

Given the stability of both input and output power measurements, it is possible to quickly 

establish system efficiency without the need for filtering and smoothing. 
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Figure 8: Comparison of fixed-time vs independently synchronised windows. 

4 CONCLUSION 

Faced with an objective of deriving the efficiency of an electrical system, engineers may 

instinctively assume that the optimum solution is an analysis of measurement results taken at 

exactly the same moment in time. 

However, by establishing the impact of fixed time measurement windows that are not 

synchronised with a periodic AC waveform, it becomes clear that simultaneous data 

acquisition is unlikely to be the optimum solution, unless the application is either steady state 

or permits an extended period of time averaging. 

Ensuring correct frequency synchronisation and a corresponding measurement window with 

any periodic measurement within a power system, will yield greater measurement stability 

from which quicker and more accurate efficiency can be derived. 


