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Analogue to Digital Converter (ADC) 

– Bit Count superstition 
Abstract 

A common assumption is that the ADC bit count is the primary indictor of a digital 
measurement instrument’s accuracy. That in turn leads to the belief that a greater number 
of bits would therefore result in a more accurate instrument. 
 
This document analyses the impact of bit count on typical electrical power measurements 
to demonstrate that quantisation error quickly becomes negligible when compared to 
overall system performance.  
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1 INTRODUCTION 

In the field of measurement instrumentation, where modern products convert analogue 

quantities into a digital readout, there is a common misunderstanding that accuracy is 

primarily dependent upon the number of bits in the ADC.  

While the resolution of the ADC does contribute to the overall system performance, it is 

usually not the limiting factor in practical measurement and simply increasing the bit count 

will not yield greater system accuracy.  

The true accuracy of a system is composed of the many stages of measurement, from the 

analogue signal conditioning, the conversion to a digital measurement and the mathematical 

post-processing carried out. 

The continued shift towards purely digital systems leaves many engineers with little 

exposure to the analogue world and therefore they may not have an appreciation of the 

physical limitations that dictate the accuracy of their measurements. 

In a purely analogue system with an analogue dial reading, the equivalent would be the 

belief that simply adding more graticules on the dial will produce a more accurate reading. 

From this example, we can easily recognise that beyond the ability to visually resolve the 

new scale, the actual accuracy of the system will continue to be dictated by the mechanical 

linkages moving the needles and the front end. The same is true of a modern digital system.   

2 ADC OVERVIEW 

Before considering an ADC in the application of power electronics, it is worth discussing 

some of the features of ADC that are often overlooked. 
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2.1 BALANCE OF PERFORMANCE 
As with most engineering decisions, the performance of an ADC involves the consideration 

of multiple features. Usually this is a balance of: resolution (bits), sample rate, bandwidth, 

linearity and cost.  

The number of bits is often used as a headline figure for ADCs; it is easy to understand, and 

the subject of quantisation error is often taught to undergraduates. Yet, the true real-world 

performance of the device is far more complicated. 

There are many different architectures but in general, the opportunity cost of increasing the 

number of bits involves a concession in some other performance characteristic of the device. 

In certain conditions, this can lead to a loss of bits.  

2.1.1 Effective number of Bits (ENOB) 

The ideal n-bit ADC would always provide n-bits of useable bits, but these devices are not 

ideal and the influence of many factors including linearity, noise and no missing code result 

in some bits being effectively unusable. 

This is characterised as an effective number of bits and is contingent on the operation of the 

device.  

These values are usually provided with ADC’s and can be significantly lower than the 

headline spec for high frequency applications. The effectiveness of the ADC will also be 

impacted by the surrounding circuitry such as a poorly designed front end, injecting 

significant amounts of noise can further reduce this value. 

3 BITS REQUIRED FOR RMS MEASUREMENTS 

Given the need to balance the overall system performance and the knowledge that there is 

inevitably a law of diminishing returns, there remains the question of ‘How many bits do I 

actually require?’. 

The design considerations are very complicated but as an example, the RMS measurement 

of a sine wave is considered. This is the simplest waveform and is the foundation for AC 

power measurements.    

𝑣(𝑡) = sin⁡(𝑡) 

This is a single sine wave with a true RMS value 
1

√2
 

The aim here is to demonstrate the impact of the quantisation error on measurements to 

illustrate why a point is reached, where an increase of bits has no benefit  

3.1 SIMULATION SAMPLING AND QUANTISATION 
To simulate the core function of an ADC, a continuous waveform of discrete samples will be 

taken and then quantised to the required resolution, then the RMS maths is performed. 

In this example 10,000 linearly spaced samples were taken then these values were rounded 

to the nearest quantised level. 

The quantised steps were equally spaced between the max/min limits of the wave and the 

step size was given by: 
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Δ =
𝑀𝑎𝑥(𝑣) − 𝑀𝑖𝑛(𝑣)

2𝐵 − 1
⁡⁡⁡⁡⁡𝑊ℎ𝑒𝑟𝑒⁡𝐵⁡𝑖𝑠⁡𝑡ℎ𝑒⁡𝑏𝑖𝑡⁡𝑐𝑜𝑢𝑛𝑡 

 

The figure below shows the sine wave overlaid with the quantised waveforms from  

6 bits to 18 bits. 

 

Figure 1: Quantised sine wave from 6 to 18 bit resolution. 

 

3.2 RMS MEASUREMENT 
The Root Mean Square (RMS) of the measurement was then taken for each of the digitised 

waveforms using the following discrete formula for RMS. 

𝑠𝑎𝑚𝑝𝑙𝑒𝑑⁡𝑅𝑀𝑆 =⁡√
1

𝑁
∑(𝑣(𝑡𝑛))

2

𝑁

𝑛=1

⁡ 

 

The error is then calculated by comparing to the true RMS of  

𝑒𝑟𝑟𝑜𝑟⁡(%) = ⁡
𝑠𝑎𝑚𝑝𝑙𝑒𝑑⁡𝑅𝑀𝑆 − 𝑡𝑟𝑢𝑒⁡𝑅𝑀𝑆

𝑡𝑟𝑢𝑒⁡𝑅𝑀𝑆
∙ 100 
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Figure 2: Sampled RMS error vs ADC bit count – 0.01% error shown for reference 

Figure 2 shows the error from the number of bits1 and a line in red which shows the typical 

specification for a high-performance power analyser at 0.01%. It is evident from this graph 

that the error contribution tends to zero but there are rapid diminishing returns. The 

contribution of error at even 10 bits is a small fraction of the defined accuracy, so it is 

therefore self-evident that the error is a small fraction of the total system error and, given this 

realisation, the route to high system performance is not to increase the number of bits. 

How this relates to a more complex waveform is discussed in Section 3.6. 

3.3 BUT WHAT ABOUT LOW RANGED SIGNALS  
The example of RMS given in section 3.2 uses an ideally ranged signal. A reasonable 

counter to this result, is that the requirement from greater bit resolution remains to 

compensate for the effective loss of bits when a small signal, that only covers a fraction of 

the total measurement range, is applied. 

3.3.1 Effective bit loss 

In a fixed range system, this occurs when a signal is only using a fraction of the ADC range. 

If the signal is only half of the ADC’s range, effectively a bit is lost, and so on as shown in the 

table below. 

 

 

  

 
1 As a DFT has been used, a non-integer number of bits has been simulated to ensure that the 
envelope of error is captured. 
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Table 1: Effective bit loss 

Percentage 
of Range 

Bit loss 

50 1 

25 2 

12.5 3 

6.25 4 

3.125 5 

1.5625 6 

0.78125 7 
 

It is clear to see that a signal at less than 1% of full range, will effectively lose 6 bits of 

resolution. This is very important on single range DAQ as they typically have a basic front 

end with a single, fixed range. For this reason, single DAQ’s or basic measurement systems 

often attempt to continue to read small measurement using more bits. 

In contrast to this, precision measurement instruments achieve low signal level analysis by 

ranging, which means that for most measurements, the waveform will always be greater 

than ~30% of range.  

3.3.2 Hardware ranging and signal condition 

 

An alternative approach to optimise the measurement signal is therefore through hardware 

ranging and coupling, so that measurement from the sensors (usually attenuators and 

shunts in power applications) utilise a greater proportion of the ADC input to maintain 

resolution.  

For example, in a PPA55 the internal current ranges (peak) are 30𝑚𝐴 to 300𝐴2.  

Taking the top range and a 14 bit resolution, the smallest step size would be: 

Δ =⁡
300 − (−300)

214 − 1
= 36𝑚𝐴 

And the step size for the bottom range: 

Δ = ⁡
30 × 10−3 −⁡(−30 × 10−3)

214 − 1
= 3.66𝜇𝐴 

 

Now, if this were a fixed range of 300A it would in theory require  

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑⁡𝐵𝑖𝑡𝑠 = log2 (
300 − (−300)

3.66𝜇𝐴
+ 1) = 27.3⁡ 

 

So, in theory, even if we ignore the impact of noise, a fixed ranged system would require 27 bits, 

to achieve the same performance and dynamic range.  
 

This ranging technique overcomes the need for a greater number of bits and ensures that the 

ADC is operating in the centre of its range. Good ranging techniques also have the benefit of 

 
2 Ranges and symmetric. -300 to +300A, and therefore the actual range is double the peak value. 
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increasing the signal to noise ratio of the signal being analysed, so measurements are less 

influenced by other sources of error, such as noise that can dominate measurements. 

 

3.4 WHAT ABOUT SMALL SUPERIMPOSED SIGNALS 
A secondary question is ‘what about small signals superimposed upon a large signal?’. The 

issue here being that there are often small components that need to be measured upon a 

large signal; these do not benefit to the same extent from hardware ranging since the range 

will be selected upon the peaks of the large waveform, and the small component may need 

represent a smaller fraction of the range. 

In the power electronics field, a common example of these complex waveforms is the 

analysis of harmonics or a small signal with a large DC offset. 

The DC offset is a simpler case, AC coupling can be used to isolate the AC components 

from the large DC and ensure that ranging is appropriate. 

Analysis of harmonics is a more involved application and requires the use of a Fourier 

Transform to extract the harmonic components which are impacted less by the bit count. 

An example is given in the following subsections.  

3.4.1 An International Electrotechnical Commission (IEC) standard 

Selecting a waveform for demonstration is not too easy, because the waveforms can vary 

significantly between applications.  

However, one stringent application for harmonics is the IEC 61000-3-2 Electromagnetic 

Compatibility (EMC) standard which limits the harmonic current emissions.  

For this example, we use the Class D harmonic limits where the dynamic range of harmonic 

measurements are most demanding. 

 

3.4.2 The waveform 

A waveform with a high crest factor is challenging since the range of the instrument will have 

to be increased to capture the peak. This means that the small harmonic components will 

therefore represent a smaller percental of range and therefore have the fewest number of 

effective bits. 

To create the wave, the harmonics limits were calculated using the limits defined in the 

standard, with an assumed 600 watts in the fundamental.  

The phase angle of the alternate odd harmonics (3rd, 7th, 11th etc) was set to 180 degrees so 

that they constructively interfere to produce a “peaky” (high crest factor) waveform; this 

makes the waveform more challenging as it maximises the dynamic range between the 

harmonic magnitude and total peak. 

 

Table 2: IEC example waveform - harmonics 

Harmonics RMS (A) Mag (A) Phase (Deg) 

1 2.6087 3.6893 0 

3 1.4425 2.0400 -180 

5 0.8061 1.1400 0 

7 0.4243 0.6000 -180 
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Table 2: IEC example waveform - harmonics 

Harmonics RMS (A) Mag (A) Phase (Deg) 

9 0.2121 0.3000 0 

11 0.1485 0.2100 -180 

13 0.1256 0.1777 0 

15 0.1089 0.1540 -180 

17 0.0961 0.1359 0 

19 0.0860 0.1216 -180 

21 0.0778 0.1100 0 

23 0.0710 0.1004 -180 

25 0.0653 0.0924 0 

27 0.0605 0.0856 -180 

29 0.0563 0.0797 0 

31 0.0527 0.0745 -180 

33 0.0495 0.0700 0 

35 0.0467 0.0660 -180 

37 0.0441 0.0624 0 

39 0.0419 0.0592 -180 

 

Using the harmonics in Table 2, the waveform can be constructed in the time domain, Figure 

3. This has also been overlaid with a 12-bit quantised waveform. This is not readily visible at 

this zoom level, so Figure 4 shows a magnified version with a step size of ~4mA. 

 

Figure 3: Example IEC waveform with a 50Hz fundamental. 
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Figure 4: Example IEC waveform - high zoom to show quantisation. 

The primary features of the wave form. 

Table 3: IEC waveform parameters 
 

Parameter Value 

Fundamental Frequency 50 Hz 

Peak 9.3686 A 

RMS 3.1401 A 

Crest Factor 3 

3.5 ANALYSING THE WAVEFORM 
To analyse the waveform the DFT was calculated using the equation: 

 

⁡𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒(𝑓) = ⁡ |∑𝑣[𝑛] ∙ 𝑒−𝑗2𝜋𝑓𝑡[𝑛]
𝑁

𝑛=1

| ∙
2

𝑁
 

 

This function can then be used to extract the 39 harmonics in the waveform for both the 

original waveform and the 12 bit quantised waveform, as shown in Figure 5 plot A. 

It is clear from the stem plot that the error terms are very small, so the error has been 

calculated as a percentage to help visualise the relative magnitudes. 



   
  

Ref: D000123/ Issue 1 
© Newtons4th Ltd 2020  Page 9 of 10 

Figure 5 plot B shows the error term of the 12-bit harmonics, in relation to the spec of the 

PPA55 at that point for a 10Amp range, and the reproducibility tolerance in the IEC standard 

(1% + 10𝑚𝐴). 

 

 

Figure 5:Subplot A: harmonic decomposition of IEC waveform; Subplot B: Magnitude of harmonic error 

3.6 RMS OF COMPLEX WAVEFORM 
Continuing from Section 3, the question of how the RMS error would compare for a more 

complex (non-sinusoidal) AC waveform. 

Repeating the same methodology but using the IEC waveform, Figure 6 shows the RMS 

error. The envelope of the waveform is slightly different, which is expected since there are 

multiple components in the waveforms, but the limits to the error are nominally the same. It 

is also clear that beyond ~10 bits, any error becomes an immaterial component of overall 

system specification.   
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Figure 6

 

Figure 6: Error is sampled RMS measurement for the IEC and sine waveforms with varying ADC sizes 

 

4 CONCLUSION 

The examples in this document illustrate that the contribution of error associated with 

quantization in an ADC above 10 bits is a small proportion of the overall system 

performance, and therefore simply increasing bits with the aim of increasing overall system 

accuracy becomes futile. 

Modern power analyzers utilise hardware ranging and analogue signal conditioning to 

optimise performance of ADCs and can provide a greater dynamic range than a fixed range 

system, with a high bit count.  

Designing an accurate measurement system requires the balance and consideration of 

multiple components and each stage of signal conditioning; determining the accuracy of a 

measurement system is never as straightforward as identifying the number of bits used in 

the ADC. 

Taking any singular performance characteristic cannot be used in isolation to calculate 

overall performance of any measurement instrument. Furthermore, while theoretical 

accuracy computation as illustrated in this document is helpful to determine the point at 

which specific aspects of a design have been optimised, the overall performance must 

always be validated through direct and traceable calibration.  

 

 

 


